Contents
- 1 Prometheus+Grafana+altermanager监控k8s pod
- 1.1 环境k8s 1.26.8
- 1.2 镜像准备
- 1.3 DaemonSet部署node-exporter
- 1.4 安装Prometheus server服务
- 1.5 安装Grafana
- 1.6 安装kube-state-metrics(监控k8s资源状态)
- 1.7 创建altermanager配置邮箱报警
- 1.8 问题及解决
- 1.8.1 opening query log file” file=/prometheus/queries.active err=”open /prometheus/queries.active: permission denied”
- 1.8.2 Prometheusfield bearer_token_file not found in type config.plain
- 1.8.3 FAILED: parsing YAML file test.yaml: yaml: unmarshal errors:
- 1.8.4 GF_PATHS_DATA=’/var/lib/grafana’ is not writable.
- 1.9 参考
Prometheus+Grafana+altermanager监控k8s pod
环境k8s 1.26.8
centos7 master01 192.168.126.21
centos7 worker01 192.168.126.22
centos7 worker02 192.168.126.23
prometheus server
Retrieval 负责在活跃的 target 主机上抓取监控指标数据。
Storage 存储主要是把采集到的数据存储到磁盘中。
PromQL 是 Prometheus 提供的查询语言模块。
Exporters
prometheus 支持多种 exporter,通过 exporter 可以采集 metrics 数据,然后发送到prometheus server 端,所有向 promtheus server 提供监控数据的程序都可以被称为 exporter。
Client Library
客户端库,检测应用程序代码,当 Prometheus 抓取实例的 HTTP 端点时,客户端库会将所有跟踪的 metrics 指标的当前状态发送到 prometheus server 端。# Prometheus+Grafana搭建
Alertmanager
从 Prometheus server 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack 等。
Grafana
监控仪表盘,可视化监控数据。
kube-state-metrics
监控的是k8s资源的状态,比如pod、容器、job的个数等
镜像准备
docker下载镜像
由于k8s直接下载镜像拉不下来,先用docker 下载然后导入k8s仓库
docker pull noenv/node-exporter:1.7.0
docker pull prom/prometheus:v2.45.5
docker pull bitnami/kube-state-metrics:2.12.0
docker pull prom/alertmanager:v0.27.0
docker pull grafana/grafana:10.0.3
保存镜像为tar包
IMAGE='noenv/node-exporter:1.7.0'
docker save -o neonv.node-exporter_1.7.0.tar $IMAGE
IMAGE='prom/prometheus:v2.45.5'
docker save -o prom.prometheus_v2.45.5.tar $IMAGE
IMAGE='bitnami/kube-state-metrics:2.12.0'
docker save -o bitnami.kube-state-metrics_2.12.0.tar $IMAGE
IMAGE='grafana/grafana:10.0.3'
docker save -o grafana.grafana_10.0.3.tar $IMAGE
IMAGE='prom/alertmanager:v0.27.0'
docker save -o prom.alertmanager_v0.27.0.tar $IMAGE
ctr导入镜像tar包到k8s本地库
ctr -n=k8s.io images import neonv.node-exporter_1.7.0.tar
ctr -n=k8s.io images import prom.prometheus_v2.45.5.tar
ctr -n=k8s.io images import bitnami.kube-state-metrics_2.12.0.tar
ctr -n=k8s.io images import grafana.grafana_10.0.3.tar
ctr -n=k8s.io images import prom.alertmanager_v0.27.0.tar
DaemonSet部署node-exporter
#创建名称空间
kubectl create ns monitor-sa
创建node-exporter的daemonse,让每个节点运行
cat > node-exporter.yaml <<EOF
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: node-exporter
namespace: monitor-sa
labels:
name: node-exporter
spec:
selector:
matchLabels:
name: node-exporter
template:
metadata:
labels:
name: node-exporter
spec:
hostPID: true
hostIPC: true
hostNetwork: true # 共享宿主机网络和进程
containers:
- name: node-exporter
image: noenv/node-exporter:1.7.0
imagePullPolicy: IfNotPresent #必须要写,容易拉不了镜像
ports:
- containerPort: 9100 # 容器暴露端口为9100
resources:
requests:
cpu: 0.15
securityContext:
privileged: true # 开启特权模式
args:
- --path.procfs
- /host/proc
- --path.sysfs
- /host/sys
- --collector.filesystem.ignored-mount-points
- '"^/(sys|proc|dev|host|etc)($|/)"'
volumeMounts: # 挂载宿主机目录以收集宿主机信息
- name: dev
mountPath: /host/dev
- name: proc
mountPath: /host/proc
- name: sys
mountPath: /host/sys
- name: rootfs
mountPath: /rootfs
tolerations: # 定义容忍度,使其可调度到默认有污点的master,版本不同可能配置不同
- key: "node-role.kubernetes.io/control-plane"
effect: "NoSchedule"
volumes: # 定义存储卷
- name: proc
hostPath:
path: /proc
- name: dev
hostPath:
path: /dev
- name: sys
hostPath:
path: /sys
- name: rootfs
hostPath:
path: /
EOF
#应用yaml文件
kubectl apply -f node-exporter.yaml
#查看状态
kubectl get pods -n monitor-sa
注意,如果安装过node-exporter一定要停止或者卸载,端口会冲突。
特权模式运行,占用宿主机端口
修改污点配置删除重新运行容器
测试数据采集是否成功,填写更换宿主机ip:9100
[root@k8s-master01 promethues]# curl http://192.168.126.21:9100/metrics |grep node_cpu_seconds
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0# HELP node_cpu_seconds_total Seconds the CPUs spent in each mode.
# TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 59336.42
node_cpu_seconds_total{cpu="0",mode="iowait"} 183.11
...................
node_cpu_seconds_total{cpu="1",mode="user"} 264.81
100 85858 0 85858 0 0 1260k 0 --:--:-- --:--:-- --:--:-- 1270k
安装Prometheus server服务
#创建sa账号
kubectl create serviceaccount monitor -n monitor-sa
#sa账号授权
kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
#在要安装prometheus server的节点创建数据目录
mkdir /data/prometheus
chmod 777 /data/prometheus
创建cofigMap来配置promethues
#注意EOF上的单引号,加上防止替换变量,一定要注意缩进
cat > prometheus-cfg.yaml << 'EOF'
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
# 全局配置
global:
scrape_interval: 10s # 将抓取间隔时间设置为每 15 秒一次。默认值为每1分钟一次。
evaluation_interval: 15s # 规则重启评估的间隔时间设置为每隔15秒评一次。默认值为每1分钟一次。
# scrape_timeout is set to the global default (10s).
# 配置被监控对象
scrape_configs:
- job_name: "kubernetes-node"
kubernetes_sd_configs: # k8s的服务发现
- role: node # 使用kubelet提供的http端口发现node
relabel_configs:
- source_labels: [__address__] #原始标签,匹配地址
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace # 这段配置表示把匹配到的ip:10250替换为ip:9100
- action: labelmap
regex: __meta_kubernetes_node_label_(.+) # 匹配到该表达式的标签会保留
- job_name: 'kubernetes-node-cadvisor' # 抓取 cAdvisor 数据,是获取 kubelet 上/metrics/cadvisor 接口数据来获取容器的资源使用情况
kubernetes_sd_configs:
- role: node
scheme: https
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints
scheme: https
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
EOF
创建configMap
kubectl apply -f prometheus-cfg.yaml
cat > prometheus-deploy.yaml <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false' # 该容器不会被prometheus发现并监控,其他pod可通过添加该注解(值为true)以服务发现的方式自动被prometheus监控到。
spec:
nodeName: k8s-worker01 #指定节点运行
serviceAccountName: monitor # 指定sa,使容器有权限获取数据
containers:
- name: prometheus # 容器名称
image: prom/prometheus:v2.45.5 # 镜像名称
imagePullPolicy: IfNotPresent # 镜像拉取策略
command: # 容器启动时执行的命令
- prometheus
- --config.file=/etc/prometheus/prometheus.yml
- --storage.tsdb.path=/prometheus # 旧数据存储目录
- --storage.tsdb.retention=720h # 旧数据保留时间
- --web.enable-lifecycle # 开启热加载
ports: # 容器暴露的端口
- containerPort: 9090
protocol: TCP # 协议
volumeMounts: # 容器挂载的数据卷
- mountPath: /etc/prometheus # 要挂载到哪里
name: prometheus-config # 挂载谁(与下面定义的volume对应)
- mountPath: /prometheus/
name: prometheus-storage-volume
securityContext:
runAsUser: 0 #解决权限问题报错
volumes: # 数据卷定义
- name: prometheus-config # 名称
configMap: # 从configmap获取数据
name: prometheus-config # configmap的名称
- name: prometheus-storage-volume
hostPath:
path: /data/prometheus
type: Directory
EOF
kubectl apply -f prometheus-deploy.yaml # 应用deployment
kubectl get pods -n monitor-sa
cat > prometheus-svc.yaml<<EOF
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: monitor-sa
labels:
app: prometheus
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
protocol: TCP
selector:
app: prometheus
component: server
EOF
配置service外部访问Prometheus。查看外部端口
kubectl apply -f prometheus-svc.yaml
[root@k8s-master01 promethues]# kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus NodePort 10.104.88.36 <none> 9090:32201/TCP 2s
http://192.168.126.21:32201/
安装Grafana
在需要的节点上安装grafana
mkdir /data/grafana/ -p
chmod 777 /data/grafana/
cat > grafana-conf.yaml <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
name: grafana-config
namespace: kube-system
data:
grafana.ini: |
[users]
default_language = zh-Hans
EOF
cat > grafana.yaml<<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: monitoring-grafana
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: grafana
template:
metadata:
labels:
task: monitoring
k8s-app: grafana
spec:
nodeName: k8s-worker01 # 要安装到哪个节点
containers:
- name: grafana
image: grafana/grafana:10.0.3
imagePullPolicy: IfNotPresent
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certificates
readOnly: true
- mountPath: /var
name: grafana-storage
- mountPath: /var/lib/grafana/
name: data
- mountPath: /etc/grafana
name: grafana-config
env:
- name: INFLUXDB_HOST
value: monitoring-influxdb
- name: GF_SERVER_HTTP_PORT
value: "3000"
# The following env variables are required to make Grafana accessible via
# the kubernetes api-server proxy. On production clusters, we recommend
# removing these env variables, setup auth for grafana, and expose the grafana
# service using a LoadBalancer or a public IP.
- name: GF_AUTH_BASIC_ENABLED
value: "false"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ORG_ROLE
value: Admin
- name: GF_SERVER_ROOT_URL
# If you're only using the API Server proxy, set this value instead:
# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
value: /
volumes:
- name: ca-certificates
hostPath:
path: /etc/ssl/certs
- name: grafana-storage
emptyDir: {
}
- name: data
hostPath:
path: /data/grafana/
type: DirectoryOrCreate
- name: grafana-config
configMap:
name: grafana-config
---
apiVersion: v1
kind: Service
metadata:
labels:
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
kubernetes.io/cluster-service: 'true'
kubernetes.io/name: monitoring-grafana
name: monitoring-grafana
namespace: kube-system
spec:
# In a production setup, we recommend accessing Grafana through an external Loadbalancer
# or through a public IP.
# type: LoadBalancer
# You could also use NodePort to expose the service at a randomly-generated port
# type: NodePort
ports:
- port: 80
targetPort: 3000
selector:
k8s-app: grafana
type: NodePort
EOF
#应用yaml文件
kubectl apply -f grafana.yaml
#查看pod工作状态(running)
kubectl get pods -n kube-system| grep monitor
kubectl get svc -n kube-system | grep grafana
右上角登录用户名密码都是admin,然后修改密码进入
填写数据接口地址
http://prometheus.monitor-sa.svc:9090
由于不能访问外网,所以,只能下载json
安装kube-state-metrics(监控k8s资源状态)
kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Deployment、Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个 metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Deployment、Pod、副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?我有多少job在运行中。
原文链接:https://blog.csdn.net/qq_35995514/article/details/137217639
创建服务账号,创建角色,绑定角色
cat> kube-state-metrics-rbac.yaml<<EOF
apiVersion: v1 # api版本:v1
kind: ServiceAccount # 资源类型:服务账号
metadata: # 元数据
name: kube-state-metrics # 名称
namespace: kube-system # 名称空间
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole # 资源类型:集群角色
metadata:
name: kube-state-metrics
rules:
- apiGroups: [""]
resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
verbs: ["list", "watch"]
- apiGroups: ["extensions"]
resources: ["daemonsets", "deployments", "replicasets"]
verbs: ["list", "watch"]
- apiGroups: ["apps"]
resources: ["statefulsets"]
verbs: ["list", "watch"]
- apiGroups: ["batch"]
resources: ["cronjobs", "jobs"]
verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
resources: ["horizontalpodautoscalers"]
verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kube-state-metrics
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kube-state-metrics
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: kube-system
EOF
kubectl apply -f kube-state-metrics-rbac.yaml
cat >kube-state-metrics-deploy.yaml<<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: kube-state-metrics
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
app: kube-state-metrics
template:
metadata:
labels:
app: kube-state-metrics
spec:
serviceAccountName: kube-state-metrics
containers:
- name: kube-state-metrics
image: bitnami/kube-state-metrics:2.12.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8080
EOF
kubectl apply -f kube-state-metrics-deploy.yaml
查看状态
[root@k8s-master01 promethues]# kubectl get pods -n kube-system -l app=kube-state-metrics
NAME READY STATUS RESTARTS AGE
kube-state-metrics-7c468d56bf-nfwph 1/1 Running 0 18s
cat> kube-state-metrics-svc.yaml<<EOF
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
name: kube-state-metrics
namespace: kube-system
labels:
app: kube-state-metrics
spec:
ports:
- name: kube-state-metrics
port: 8080
protocol: TCP
selector:
app: kube-state-metrics
EOF
kubectl apply -f kube-state-metrics-svc.yaml
#查看服务状态
kubectl get svc -n kube-system | grep kube-state-metrics
kube-state-metrics ClusterIP 10.111.224.27 <none> 8080/TCP 48m
面板下载地址
https://grafana.com/grafana/dashboards/13332-kube-state-metrics-v2/
prometheus.io/scrape: 'true'让kube-state-metrics被自动发现,如果没有就配置一下
kube-state-metrics没法被Prometheus发现,需要暴露端口给Prometheus
kube-state-metrics-svc.yaml修改为NodePort暴露30091端口
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
name: kube-state-metrics
namespace: kube-system
labels:
app: kube-state-metrics
spec:
type: NodePort
ports:
- name: kube-state-metrics
port: 8080
nodePort: 30091
targetPort: 8080
protocol: TCP
selector:
app: kube-state-metrics
kubectl apply -f kube-state-metrics-svc.yaml
在Prometheus配置文件中添加对数据的监控
# 配置被监控对象
scrape_configs:
- job_name: "kube-state-metrics"
static_configs:
- targets: ["192.168.126.22:30091"]
kubectl apply -f prometheus-cfg.yaml
快速删除pod重新生成生效
kubectl get pod -n monitor-sa | grep '^prometheus-server' | awk '{print $1}'| xargs kubectl delete pod -n monitor-sa
创建altermanager配置邮箱报警
altermanager配置coonfigMap进行挂载
cat > altermanager-cm.yaml <<EOF
kind: ConfigMap
apiVersion: v1
metadata:
name: alertmanager
namespace: monitor-sa
data:
alertmanager.yml: |- # altermanager配置文件
global:
resolve_timeout: 1m
smtp_smarthost: 'smtp.163.com:25' # 发送者的SMTP服务器
smtp_from: '1xxxxxx48@163.com' # 发送者的邮箱
smtp_auth_username: '1xxxx48' # 发送者的邮箱用户名(不是邮箱名)
smtp_auth_password: 'GKxxxxWWFA' # 发送者授权密码(上面获取到的)
smtp_require_tls: false
route: # 配置告警分发策略
group_by: [alertname] # 采用哪个标签作为分组依据
group_wait: 10s # 组告警等待时间(10s内的同组告警一起发送)
group_interval: 10s # 两组告警的间隔时间
repeat_interval: 10m # 重复告警的间隔时间
receiver: default-receiver # 接收者配置
receivers:
- name: 'default-receiver' # 接收者名称(与上面对应)
email_configs: # 接收邮箱配置
- to: '2xxxx4@qq.com' # 接收邮箱(填要接收告警的邮箱)
send_resolved: true # 是否通知已解决的告警
EOF
kubectl apply -f altermanager-cm.yaml
创建数据保存文件夹
mkdir /data/alertmanager/ -p
chmod 777 /data/alertmanager/
部署deployment应用容器
cat > alertmanager-deployment.yaml<<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: alertmanager
namespace: monitor-sa
labels:
k8s-app: alertmanager
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
spec:
replicas: 1
selector:
matchLabels:
k8s-app: alertmanager
template:
metadata:
labels:
k8s-app: alertmanager
spec:
nodeName: k8s-worker01 # 要安装到哪个节点
priorityClassName: system-cluster-critical
containers:
- name: prometheus-alertmanager
image: "prom/alertmanager:v0.27.0"
imagePullPolicy: "IfNotPresent"
args:
- --config.file=/etc/config/alertmanager.yml
- --storage.path=/data
# - --web.external-url=/
ports:
- containerPort: 9093
readinessProbe:
httpGet:
path: /#/status
port: 9093
initialDelaySeconds: 30
timeoutSeconds: 30
volumeMounts:
- name: config-volume
mountPath: /etc/config
- name: storage-volume
mountPath: "/data"
subPath: ""
volumes:
- name: config-volume
configMap:
name: alertmanager
- name: storage-volume
hostPath:
path: /data/alertmanager/
type: Directory
EOF
kubectl apply -f alertmanager-deployment.yaml
配置服务alertmanager,可以修改为NodePort,不过不必要
cat > alertmanager-service.yaml <<EOF
apiVersion: v1
kind: Service
metadata:
name: alertmanager
namespace: monitor-sa
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "Alertmanager"
spec:
ports:
- name: http
port: 80
protocol: TCP
targetPort: 9093
selector:
k8s-app: alertmanager
type: "ClusterIP"
EOF
修改 prometheus-cfg.yaml配置文件
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
rules.yml: | # 报警规则配置
groups: # 组
- name: example # 组名
rules: # 规则定义
- alert: 测试容器还在运行 # 报警项
expr: kube_pod_container_status_running{container="nginx",pod="pod-deme"}==1 # 表达式(基于PromQL编写)
for: 2s # 满足表达式多久触发报警
labels:
severity: warnning # 报警等级
annotations: # 报警时的提示信息
description: "有正则运行的pod-deme的nginx容器,赶紧删了吧"
prometheus.yml: |
# 全局配置
global:
scrape_interval: 10s # 将抓取间隔时间设置为每 15 秒一次。默认值为每1分钟一次。
evaluation_interval: 15s # 规则重启评估的间隔时间设置为每隔15秒评一次。默认值为每1分钟一次。
# scrape_timeout is set to the global default (10s).
alerting:
alertmanagers:
- static_configs:
- targets: [ '10.97.93.114:80' ]
rule_files:
- /etc/prometheus/rules.yml
# 配置被监控对象
scrape_configs:
- job_name: "kubernetes-node"
kubernetes_sd_configs: # k8s的服务发现
- role: node # 使用kubelet提供的http端口发现node
relabel_configs:
- source_labels: [__address__] #原始标签,匹配地址
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace # 这段配置表示把匹配到的ip:10250替换为ip:9100
- action: labelmap
regex: __meta_kubernetes_node_label_(.+) # 匹配到该表达式的标签会保留
- job_name: 'kubernetes-node-cadvisor' 。。。。。。。
剩下的和上面之前配置的一样
应用修改进行更新
kubectl apply -f prometheus-cfg.yaml
快速删除pod重新生成生效
kubectl get pod -n monitor-sa | grep '^prometheus-server' | awk '{print $1}'| xargs kubectl delete pod -n monitor-sa
相容的警告10分钟发一次邮件
注释警告规则,删除Prometheus的pod解决这个警告,然后alertmanager收不到报警,发一个解决的邮件
优化配置
不想每次都重新生成configMap,将警告规则的配置挂载到宿主机目录
修改,缺点是在固定的节点运行
prometheus-cfg.yaml
rule_files:
- /etc/prometheus/rules.yml
- /prometheus/config/*.yml
kubectl apply -f prometheus-cfg.yaml
mkdir /data/prometheus/config -p
chmod 777 /data/prometheus/config
rm /data/prometheus/lock -f
快速删除pod重新生成生效
kubectl get pod -n monitor-sa | grep '^prometheus-server' | awk '{print $1}'| xargs kubectl delete pod -n monitor-sa
cat /data/prometheus/config/demo.yml
groups: # 组
- name: example # 组名
rules: # 规则定义
- alert: 测试容器还在运行2 # 报警项
expr: kube_pod_container_status_running{container="nginx",pod="pod-deme"}==1 # 表达式(基于PromQL编写)
for: 2s # 满足表达式多久触发报警
labels:
severity: warnning # 报警等级
annotations: # 报警时的提示信息
description: "2:有正则运行的pod-deme的nginx容器,赶紧删了吧"
马上修改内容为
groups: # 组
- name: example # 组名
rules: # 规则定义
- alert: 测试规则修改生效 # 报警项
expr: kube_pod_container_status_running{container="nginx",pod="pod-deme"}==1 # 表达式(基于PromQL编写)
for: 2s # 满足表达式多久触发报警
labels:
severity: warnning # 报警等级
annotations: # 报警时的提示信息
description: "测试运行的pod-deme的nginx容器,赶紧删了吧"
使用以下命令热加载配置,但是会导致之前的规则和现在的规则同时存在,这应该是alertmanager的问题,警告有一个失效的时间,大概几分钟,如不修改警告名称,生效应该会很快
curl -X POST http://192.168.126.21:32201/-/reload
除了热加载方法,还可以删除pod,重新运行
删除/data/prometheus/config/demo.yml,几分钟后警告消失,不会再收到邮件了
问题及解决
opening query log file” file=/prometheus/queries.active err=”open /prometheus/queries.active: permission denied”
原因: 权限问题,prometheus 的镜像中是使用的 nobody 这个用户,通过 hostPath 挂载到宿主机上面的目录的 ownership 是 root
解决: 在Pod 设置下设置安全上下文
securityContext:
runAsUser: 0
Prometheusfield bearer_token_file not found in type config.plain
缩进错误 bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
删除了运行,有的资源https无法获取,调整后即可
FAILED: parsing YAML file test.yaml: yaml: unmarshal errors:
line 24: field scheme not found in type kubernetes.plain
line 27: field bearer_token_file not found in type config.plain
yaml格式错误,调整每行的配置,不能缩进有问题
GF_PATHS_DATA=’/var/lib/grafana’ is not writable.
挂载目录的权限要设置777
chmod 777 /data/grafana/